Python

Python.org
Python 3.9.6
Release Date: June 28, 2021

Load PyCharm

Object

Python is an object-oriented programming language. Everything is in Python treated as an object, including variable, function, list, tuple, dictionary, set, etc. Every object belongs to its class. ... An object is a real-life entity. An object is the collection of various data and functions that operate on those data.

Variable- use to temporally store a value
To declare a variable you start the line with the name of the variable.
Separate multiple named variables with an underscore
3 types of variables
· Numbers: integers and floats – floating point numbers
· Strings – a sequence of characters or textural data
· Boolean value – True or False value – it must be capitalized
Use these functions to convert from one to another

[image:]
To know what type of variable you are working with use the type command:

[image:]

Function - like print, input, int
	Print may be used like this: print(‘*’ x 10) which yields **********
	Print can also just pull out one letter of a string. Remember “0” is the first letter and -2 is the second letter from the end of the string. The difference between parenthesis to brackets is meaningful. The following produces the second to last letter of the string variable “course”:

[image:]

Now run this:

[image:]

Method – a function as part of an object

[image:]

Operators – short cut for a method (which in a function as part of an object)

[image:]

“in”-is the operator

Augmented assignment operator – both these statements are equivalent

[image:]

+-* - per usual
/ - divide
// - divide yielding an integer
% - modulus operator – is the remainder after division – 10%3 yields 1
** - exponent
+= above

Operator precedence - */ operations trump +- in order of execution.

Comparison operators – compares two values and returns a Boolean expression
> >= < <=
== Askes if the value is the same
!= askes of values are different
[image:]

Logical operators
	And
	OR
NOT
[image:]

Indentations shows a block of code
Tab indents you
Shift-tab undents you

List
[image:]

Append

[image:]

Insert

[image:]

Remove

[image:]

Clear – no parameters necessary

[image:]

“In” operator – is something in a list yielding a boolean response

[image:]

Len built in Function– how long is a list
[image:]
For Loop

[image:]

While loop – more difficult
[image:]

Range (5)
The first 5 numbers 0-4
Range (5, 10)
Numbers 5 to 10 but 10 is excluded= 4,5,6,7,8,9,
Range (5, 10, 2)
Numbers 5-10 step by 2 = 5,7,9

Tuples- lists that are immutable
	A list is in brackets
	A tuple is in parenthesis

Expression – a piece of code that produces a value.
Concatenate – to add to strings together to make them one.

Terminal window – the run window

Making a USB device – see YouTube.com

[image:]

https://www.youtube.com/results?search_query=circuit+python+with+raspberry+pi+pico

Downloading Circuit Python

https://circuitpython.org/downloads

Circuit Python Libraries

https://circuitpython.org/libraries

Pocket NC controller

https://hackaday.io/project/180777-pocket-nc-jog-controller

Difficulties with Encoders

https://labjack.com/forums/python/read-incremental-encoder-python-using-t7

AdaFruit encoders
Describes difficulties with encoders

https://www.adafruit.com/product/4991

Engineer Man

https://www.youtube.com/watch?v=VQxBd5tLza8

AdaFruit Circuit Python Bundle

https://github.com/adafruit/Adafruit_CircuitPython_Bundle

The libraries on my computer are at:

D:\Design\The Cube\adafruit-circuitpython-bundle-6.x-mpy-20210806.zip\adafruit-circuitpython-bundle-6.x-mpy-20210806\lib

[image:]

From CircuitPython Documentation Release 7.0.0-alpha.5
Page 38

https://circuitpython.readthedocs.io/_/downloads/en/latest/pdf/

1.8 Full Table of Contents

1.8.1 Core Modules

These core modules are intended on being consistent across ports and boards. A module may not exist on a port/board if no underlying hardware support is present or if flash space is limited. For example, a microcontroller without analog features will not have analogio. See the Module Support Matrix - Which Modules Are Available on Which Boards page for a list of modules supported on each board.

Module Support Matrix - Which Modules Are Available on Which Boards

The following table lists the available built-in modules for each CircuitPython capable board

[image:]

[In searchable text:
Raspberry Pi Pico
_bleio, adafruit_bus_device, adafruit_pixelbuf, alarm, analogio,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii,
bitbangio, bitmaptools, bitops, board, busio, countio, digitalio,
displayio, errno, fontio, framebufferio, getpass, imagecapture, json,
keypad, math, microcontroller, msgpack, neopixel_write, nvm, os, pulseio,
pwmio, qrio, rainbowio, random, re, rgbmatrix, rotaryio, rtc, sdcardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time,
touchio, traceback, ulab, usb_cdc, usb_hid, usb_midi, vectorio, watchdog]

Also from CircuitPython Documentation Release 7.0.0-alpha.5
Page 156

https://circuitpython.readthedocs.io/_/downloads/en/latest/pdf/

[image:]

Switches and other attachments

LED’s attached to the board

RGB LED
Probably the easiest output device to work with is an LED. This output device works when enough current is applied in the right direction. Although simple it can be used to illustrate I/O techniques that can be applied to other devices like relays or transistors.

I’ll be using a Common-Cathode RGB LED, but you could also use three discrete LEDs instead. Either way, you’ll also require three dropping resistors, I used 330-ohm resistors in my experiments.

If you elect to use the RGB LED like I did make certain to get a standard RGB LED and not a programmable one. If you want to learn more about using RGB LEDs check out the article RGB LEDS – Colorful Arduino Experiments.

Pushbutton Switches
This is as simple an input device as it gets. I’m using a pair of momentary-contact normally-open pushbutton switches.

One Red and one Black, but otherwise identical.

Again we are using a simple input device to test the I/O capabilities of our little Pico. We will make it a bit more interesting by wiring our two switches differently, and we also won’t be using any pull-up or pull-down resistors.

[image:]
NOTE: AdaFruit says don’t use G15 (lower left pin), I don’t know why. Here they are using it.
Switch Test
Our next script is a very basic test of the two switches that we have wired in such a strange fashion.
The first odd thing about the wiring you will observe is that they are different, the black switch connects the input to ground while the red one connects it to 3.3-volts, for a logic HIGH.
The other interesting thing is that neither switch employs a pull-up or pull-down resistor. They obviously need them, the black switch needs a pull-up and the red one requires a pull-down in order to function correctly.
We will be adding the required resistors in the code!
switchtest.py
[image:]

Note the syntax of the lines defining the pushbuttons, (line13,14) you’ll see how they are defined as Inputs and how pull-down and pull-up resistors have been added as well.
In the while True: loop you‘ll also note that we are monitoring for different conditions, the Red switch triggers a HIGH input while the Black one triggers a LOW.
The tiny time delay at the end is a simple form of debouncing, you can experiment with the value if you like.
This script prints all of its results in the console, so watch it while you press the buttons.

Mach 3 short cuts:
· Cycle Start = Alt-R
· Feed Hold = Space Bar
· Stop = Alt-S
· Rewind = Ctrl-W
· Single Blk = Alt-N
· Jog on/off = Ctrl-Alt-J
· Spindle on (CW) = F5
· Left Arrow = Jog in -X direction
· Right Arrow = Jog in +X direction
· Up Arrow = Jog in +Y direction
· Down Arrow = Jog in -Y direction
· Page up = Jog in +Z direction
· Page down = Jog in -Z direction
· There are also Hotkeys for changing to different screens
· Program run = Alt-1
· MDI = Alt-2
· Tool Path = Alt-4
· Offsets = Alt-5
· Settings = Alt-6
· Diagnostics = Alt-7
· Step 0.0010 Alt-P
· Step 0.0100 Alt-[
· Step 0.1000 Alt-] ???needs verification
·
image4.png
course = 'Python for Beginners'

print(course[0:3])

‘app

/Users/moshfeghhamedani/PycharmPr

image5.png
course.

® replace

® upper

® capitalize(self)
® casefold

® center

® coun

= ancnode

image6.png
course = 'FPython TOor beginners-
print('Python' in course|)

image7.png
%=X+3
X += 3

image8.png

image9.png
price = 5
print(not price > 10)

and_(both)

or (at least one
not |

image10.png
numbers = [y, 2,5 3, 4, Bl

image11.png
numbers = [1, 2,.3:.4..3]

numbers.append(6)
print(numbers)|

image12.png
numbers = [1, 2, 3, 4, 5]
numbers|. insert(0, -1)

image13.png
numbers = [1, 2, 3, 4, 5]
numbers. remove (3|)

image14.png
numbers = [1, 2, 3, 4, 5]
numbers.clear()

image15.png
numbers = [1, 2, 3, 4, 5]
print(1 in numbers)

image16.png
numbers = [1, 2, 3, 4, 5]
print([len(numbers))

image17.png
numbers = [1, 2, 3, 4, 5]

for item in numbers:
print(item)

image18.png
i = O

while i < len(numbers):
print(numbers[i])
i=1i+1

image19.png
CircuitPython with Raspberry Pi Pico - Getting Started

60,650 views * Mar 5,2021

M® roneBot Workshop &

image20.png
1] adafruit_display_text
] adfrut_displyio_layout
] et emc2101

[adefrit cpd

] st esp32spi

] sdfrut_espatcontrol

] et fancied

'] dfrut festherving

] et fona

] st funhouse

[st gizmo

] adfrit hashio

[sdfrit nid

] et ni16kas

] it imageload

1 datnitio

File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder
File folder

image21.png
i

_bleio, adatruit_bus_device, adafruit_pixelbuf, alarm, analogio,
audiobusio, audiocore, audiomixer, audiomp3, audiopwmio, binascii,
bitbangio, bitmaptools, bitops, board, busio, countio, digitalio,
displayio, errno, fontio, framebufferio, getpass, imagecapture, json,
keypad, math, microcontroller, msgpack, neopixel_write, nvm, 0s, pulseio,
pumio, grio, rainbowio, random, re, rgbmatrix, rotaryio, rtc, sdeardio,
sharpdisplay, storage, struct, supervisor, synthio, terminalio, time,
touchio, traceback, ulab, ush_cde, usb_hid, usb_midi, vectorio, watchdog

image22.png
CircuitPython Documentation, Release 7.0.0-alpha.5

rotaryio - Support for reading rotation sensors

The ot 2y o module contains classes to read different rotation encoding schemes. See Wikipedia's Rotary Encoder
page for more background.
Al classes change hardware state and should be deinitialized when they are no longer needed if the program continues

after use. To do so, either call deinit () o use a context manager. See Lifetime and ContexiManagers for more
info.

class rotaryio.IncrementalEncoder (pin_a: microcontroller.Pin, pin_b: microcontroller.Pin)
IncrementalEncoder determines the relative rotational position based on twa series of pulses.

Create an IncrementalEncoder object associated with the given pins. I tracks the positional state of an incre-
‘mental rotary encoder (also known as a quadrature encoder.) Position is relative to the position when the object
is contructed.

Parameters
- pin_a (¢ i) - First pin to read pulses from.
* pin_b (¢ 11) - Second pin to read pulses from.
For example:

import rotaryic
import time
£rom board import .

enc - rotaryio.Incrementalfncoder (D1, D2)
Last_position - None
while T
position - enc.position
if last_position - None or position != last_position:
print (position)
Last_position - position

position :int
‘The current position in terms of pulses. The number of pulses per rotation is defined by the specific
hardware.

deinit (self) — None
Deinitializes the IncrementalEncoder and releases any hardware resources for reuse.
_enter__(self) — IncrementalEncoder
No-op used by Context Managers.

exit(self) — None
Automatically deinitializes the hardware when exiting a context. See Liferime and ContexiManagers for
more info.

image23.png

image24.png
© oo

SNGLRLURES

19
20
21
2
23
2
2

Raspberry PL Pico Sitch Test
switchtest.py

RED BUTTON - Pico GPIO 15 - Pin 20
BLACK BUTTON - Pico GPIO 2 - Pin 4

DroneBot Workshop 2621
https://dronebotworkshop. com

import machine
import utime

button_red = machine Pin(15, machine Pin.IN, machine Pin PULL_DONN)
button_black = machine.Pin(2, machine Pin.IN, machine Pin PULL_UP)

while True:

if button_red.value() == 1
print("Red”)

1f button_black value()
print("Black”)

utime.sleep(@.25)

image1.png
int()
float()
bool()
str(|),

image2.png
print(type(birth_year))

image3.png
Brint(course[-21)

