Feather RP2040

Recommended editors
· mu is an editor that safely writes all changes (it's also our recommended editor!)
· emacs is also an editor that will fulIy write files on save
· Sublime Text safely writes all changes
· Visual Studio Code appears to safely write all changes
· gedit on Linux appears to safely write all changes
· IDLE, in Python 3.8.1 or later, was fixed to write all changes immediately
· thonny fully writes files on save
Recommended only with particular settings or add-ons
· vim / vi safely writes all changes. But set up vim to not write swapfiles (.swp files: temporary records of your edits) to CIRCUITPY. Run vim with vim -n, set the no swapfile option, or set the directory option to write swapfiles elsewhere. Otherwise the swapfile writes trigger restarts of your program.
· The PyCharm IDE is safe if "Safe Write" is turned on in Settings->System Settings->Synchronization (true by default).
· If you are using Atom, install the fsync-on-save package or the language-circuitpython package so that it will always write out all changes to files on CIRCUITPY.
· SlickEdit works only if you add a macro to flush the disk.
The editors listed below are specifically NOT recommended!
Editors that are NOT recommended
· notepad (the default Windows editor) and Notepad++ can be slow to write, so the editors above are recommended! If you are using notepad, be sure to eject the drive
Ouch!!!
· IDLE in Python 3.8.0 or earlier does not force out changes immediately
· nano (on Linux) does not force out changes
· geany (on Linux) does not force out changes
· Anything else - Other editors have not been tested so please use a recommended one!

Overview
 Save Subscribe
[image: adafruit_products_FeatherRP_top.jpg]
A new chip means a new Feather, and the Raspberry Pi RP2040 is no exception. When we saw this chip we thought "this chip is going to be awesome when we give it the Feather Treatment" and so we did! This Feather features the RP2040, and all niceties you know and love about Feather
[image: adafruit_products_FeatherRP_back.jpg]
· Measures 2.0" x 0.9" x 0.28" (50.8mm x 22.8mm x 7mm) without headers soldered in
· Light as a (large?) feather - 5 grams
· RP2040 32-bit Cortex M0+ dual core running at ~125 MHz @ 3.3V logic and power
· 264 KB RAM
· 8 MB SPI FLASH chip for storing files and CircuitPython/MicroPython code storage. No EEPROM
· Tons of GPIO! 21 x GPIO pins with following capabilities:
· Four 12 bit ADCs (one more than Pico)
· Two I2C, Two SPI and two UART peripherals, we label one for the 'main' interface in standard Feather locations
· 16 x PWM outputs - for servos, LEDs, etc
· The 8 digital 'non-ADC/non-peripheral' GPIO are consecutive for maximum PIO compatibility
· Built in 200mA lipoly charger with charging status indicator LED
· Pin #13 red LED for general purpose blinking
· RGB NeoPixel
· On-board STEMMA QT connector that lets you quickly connect any Qwiic, STEMMA QT or Grove I2C devices with no soldering!
· Both Reset button and Bootloader select button for quick restarts (no unplugging-replugging to relaunch code)
· 3.3V Power/enable pin
· Optional SWD debug port can be soldered in for debug access
· 4 mounting holes
· 12 MHz crystal for perfect timing.
· 3.3V regulator with 500mA peak current output
· USB Type C connector lets you access built-in ROM USB bootloader and serial port debugging
[image: adafruit_products_FeatherRP_USBC_edge.jpg]
Inside the RP2040 is a 'permanent ROM' USB UF2 bootloader. What that means is when you want to program new firmware, you can hold down the BOOTSEL button while plugging it into USB (or pulling down the RUN/Reset pin to ground) and it will appear as a USB disk drive you can drag the firmware onto. Folks who have been using Adafruit products will find this very familiar - we use the technique on all our native-USB boards. Just note you don't double-click reset, instead hold down BOOTSEL during boot to enter the bootloader!
The RP2040 is a powerful chip, which has the clock speed of our M4 (SAMD51), and two cores that are equivalent to our M0 (SAMD21). Since it is an M0 chip, it does not have a floating point unit, or DSP hardware support - so if you're doing something with heavy floating-point math, it will be done in software and thus not as fast as an M4. For many other computational tasks, you'll get close-to-M4 speeds!
[image: adafruit_products_FeatherRP_STEMMA_edge.jpg]
For peripherals, there are two I2C controllers, two SPI controllers, and two UARTs that are multiplexed across the GPIO - check the pinout for what pins can be set to which. There are 16 PWM channels, each pin has a channel it can be set to (ditto on the pinout).
You'll note there's no I2S peripheral, or SDIO, or camera, what's up with that? Well instead of having specific hardware support for serial-data-like peripherals like these, the RP2040 comes with the PIO state machine system which is a unique and powerful way to create custom hardware logic and data processing blocks that run on their own without taking up a CPU. For example, NeoPixels - often we bitbang the timing-specific protocol for these LEDs. For the RP2040, we instead use PIO object that reads in the data buffer and clocks out the right bitstream with perfect accuracy. Same with I2S audio in or out, LED matrix displays, 8-bit or SPI based TFTs, even VGA! In MicroPython and CircuitPython you can create PIO control commands to script the peripheral and load it in at runtime. There are 2 PIO peripherals with 4 state machines each.
[image: adafruit_products_FeatherRP_JST_edge.jpg]
At the time of launch, there is no Arduino core support for this board. There is great C/C++ support, an official MicroPython port, and a CircuitPython port! We of course recommend CircuitPython because we think it's the easiest way to get started and it has support with most of our drivers, displays, sensors, and more, supported out of the box so you can follow along with our CircuitPython projects and tutorials.
While the RP2040 has lots of onboard RAM (264KB), it does not have built-in FLASH memory. Instead, that is provided by the external QSPI flash chip. On this board there is 8 MB, which is shared between the program it's running and any file storage used by MicroPython or CircuitPython. When using C/C++ you get the whole flash memory, if using Python you will have about 7 MB remaining for code, files, images, fonts, etc.
[image: adafruit_products_FeatherRP_top_angle.jpg]
RP2040 Chip features:
· Dual ARM Cortex-M0+ @ 133MHz
· 264kB on-chip SRAM in six independent banks
· Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus
· DMA controller
· Fully-connected AHB crossbar
· Interpolator and integer divider peripherals
· On-chip programmable LDO to generate core voltage
· 2 on-chip PLLs to generate USB and core clocks
· 30 GPIO pins, 4 of which can be used as analog inputs
· Peripherals
· 2 UARTs
· 2 SPI controllers
· 2 I2C controllers
· 16 PWM channels
· USB 1.1 controller and PHY, with host and device support
· 8 PIO state machines
[image: adafruit_products_FeatherRP_top_header.jpg]
Comes fully assembled and tested, with the UF2 USB bootloader. We also toss in some header, so you can solder it in and plug it into a solderless breadboard.

Pinouts

[image: adafruit_products_FeatherRP_pinouts.jpg]

[image: adafruit_products_FeatherRP_pinouts_back.jpg]

The Feather RP2040 has many pins, ports and features. This page takes you on a tour of the board!
[image: adafruit_products_feather-rp2040-pins.png]
Power Pins and Connections
[image: adafruit_products_FeatherRP_pinouts_Power.jpg]
· USB C connector - This is used for power and data. Connect to your computer via a USB C cable to update firmware and edit code.
· LiPoly Battery connector - This 2-pin JST PH connector allows you to plug in lipoly batteries to power the Feather. The Feather is also capable of charging batteries plugged into this port via USB.
· GND - This is the common ground for all power and logic.
· BAT - This is the positive voltage to/from the 2-pin JST jack for the optional Lipoly battery.
· USB - This is the positive voltage to/from the USB C jack, if USB is connected.
· EN - This is the 3.3V regulator's enable pin. It's pulled up, so connect to ground to disable the 3.3V regulator.
· 3.3V - These pins are the output from the 3.3V regulator, they can supply 500mA peak.
Logic Pins
[image: adafruit_products_FeatherRP_pinouts_Logic_pins.jpg]

[image: adafruit_products_FeatherRP_pinouts_back_logic_pins.jpg]
I2C and SPI on RP2040
The RP2040 is capable of handling I2C, SPI and UART on many pins. However, there are really only two peripherals each of I2C, SPI and UART: I2C0 and I2C1, SPI0 and SPI1, and UART0 and UART1. So while many pins are capable of I2C, SPI and UART, you can only do two at a time, and only on separate peripherals, 0 and 1. I2C, SPI and UART peripherals are included and numbered below.
PWM on RP2040
The RP2040 supports PWM on all pins. However, it is not capable of PWM on all pins at the same time. There are 8 PWM "slices", each with two outputs, A and B. Each pin on the Feather is assigned a PWM slice and output. For example, A0 is PWM5 A, which means it is first output of the fifth slice. You can have up to 16 PWM objects on the Feather RP2040. The important thing to know is that you cannot use the same slice and output more than once at the same time. So, if you have a PWM object on pin A0, you cannot also put a PWM object on D10, because they are both PWM5 A. The PWM slices and outputs are indicated below.
Analog Pins
The RP2040 has four ADCs. These pins are the only pins capable of handling analog, and they can also do digital.
· A0/GP26 - This pin is ADC0. It is also SPI1 SCK, I2C1 SDA and PWM5 A.
· A1/GP27 - This pin is ADC1. It is also SPI1 MOSI, I2C1 SCL and PWM5 B.
· A2/GP28 - This pin is ADC2. It is also SPI1 MISO, I2C1 SDA and PWM6 A.
· A3/GP29 - This pin is ADC3. It is also SPI1 CS, I2C0 SCL and PWM6 B.
Digital Pins
These are the digital I/O pins. They all have multiple capabilities.
· D24/GP24 - Digital I/O pin 24. It is also UART1 TX, I2C0 SDA, and PWM4 A.
· D25/GP25 - Digital I/O pin 25. It is also UART1 RX, I2C0 SCL, and PWM4 B.
· SCK/GP18 - The main SPI0 SCK. It is also I2C1 SDA and PWM1 A.
· MO/GP19 - The main SPI0 MOSI. It is also I2C1 SCL and PWM1 B.
· MI/GP20 - The main SPI0 MISO. It is also UART1 TX, I2C0 SDA and PWM2 A.
· RX/GP01 - The main UART0 RX pin. It is also I2C0 SDA, SPI0 CS and PWM0 B.
· TX/GP00 - The main UART0 TX pin. It is also I2C0 SCL, SPI0 MISO and PWM0 A.
· D4/GP06 - Digital I/O pin 4. It is also SPI0 SCK, I2C1 SDA and PWM3 A.
· D13/GP13 - Digital I/O pin 13. It is also SPI1 CS, UART0 RX, I2C0 SCL and PWM6 B.
· D12/GP12 - Digital I/O pin 12. It is also SPI1 MISO, UART0 TX, I2C0 SDA and PWM6 A.
· D11/GP11 - Digital I/O pin 11. It is also SPI1 MOSI, I2C1 SCL and PWM5 B.
· D10/GP10 - Digital I/O pin 10. It is also SPI1 SCK, I2C1 SDA and PWM5 A.
· D9/GP09 - Digital I/O pin 9. It is also SPI1 CS, UART1 RX, I2C0 SCL and PWM4 B.
· D6/GP08 - Digital I/O pin 6. It is also SPI1 MISO, UART1 TX, I2C0 SDA and PWM4 A.
· D5/GP07 - Digital I/O pin 5. It is also SPI0 MOSI, I2C1 SCL and PWM3 B.
· SCL/GP03 - The main I2C1 clock pin. It is also SPI0 MOSI, I2C1 SCL and PWM1 B.
· SDA/GP02 - The main I2C1 data pin. It is also SPI0 SCK, I2C1 SDA and PWM1 A.
CircuitPython Pins vs GPxx Pins
There are pin labels on both sides of the Feather RP2040. Which should you use? In CircuitPython, use the pin labels on the top of the board (such as A0, D4, SCL, RX, etc.). If you're looking to work with this board and the RP2040 SDK, use the pin labels on the bottom of the board (GP00 and GP01, etc.).
CircuitPython I2C, SPI and UART
Note that in CircuitPython, there is a board object each for I2C, SPI and UART that use the pins labeled on the Feather. You can use these objects to initialise these peripherals in your code.
· board.I2C() uses SCL/SDA
· board.SPI() uses SCK/MO/MI
· board.UART() uses RX/TX
GPIO Pins by Pin Functionality
Primary pins based on Feather RP2040 silk are bold.
I2C Pins
· I2C0 SCL: A3, D25, RX, D13, D9
· I2C0 SDA: A2, D24, MISO, TX, D12, D6
· I2C1 SCL: SCL, A1, MOSI, D11, D5
· I2C1 SDA: SDA, A0, SCK, D4, D10
SPI Pins
· SPI0 SCK: SCK, D4, SDA
· SPI0 MOSI: MOSI, D5, SCL
· SPI0 MISO: MISO, TX
· SPI0 CS: RX
· SPI1 SCK: A0, D10
· SPI1 MOSI: A1, D11
· SPI1 MISO: A2, D24, D12, D6
· SPI1 CS: A3, D25, D13, D9
UART Pins
· UART0 TX: TX, A2, D12
· UART0 RX: RX, A3, D13
· UART1 TX: D24, MISO, D6
· UART1 RX: D25, D9
PWM Pins
· PWM0 A: TX
· PWM0 B: RX
· PWM1 A: SCK, SDA
· PWM1 B: MOSI, SCL
· PWM2 A: MISO
· PWM2 B: (none)
· PWM3 A: D4
· PWM3 B: D5
· PWM4 A: D24, D6
· PWM4 B: D25, D9
· PWM5 A: A0, D10
· PWM5 B: A1, D11
· PWM6 A: A2, D12
· PWM6 B: A3, D13
Microcontroller and Flash
[image: adafruit_products_FeatherRP_pinouts_MCU_QSPI.jpg]
The square towards the middle is the RP2040 microcontroller, the "brains" of the Feather RP2040 board.
The square near the BOOTSEL button is the QSPI Flash. It is connected to 6 pins that are not brought out on the GPIO pads. This way you don't have to worry about the SPI flash colliding with other devices on the main SPI connection.
QSPI is neat because it allows you to have 4 data in/out lines instead of just SPI's single line in and single line out. This means that QSPI is at least 4 times faster. But in reality is at least 10x faster because you can clock the QSPI peripheral much faster than a plain SPI peripheral
Buttons and RST Pin
[image: adafruit_products_FeatherRP_pinouts_buttons_RST_pin.jpg]
The Feather RP2040 has two buttons.
The BOOTSEL button is used to enter the bootloader. To enter the bootloader, press and hold BOOTSEL and then power up the board (either by plugging it into USB or pressing RESET). The bootloader is used to install/update CircuitPython.
The RESET button restarts the board and helps enter the bootloader. You can click it to reset the board without unplugging the USB cable or battery.
The RST pin is can be used to reset the board. Tie to ground manually to reset the board.
LEDs
[image: adafruit_products_FeatherRP_pinouts_LEDs.jpg]
Above the pin labels for A0 and A1 is the status NeoPixel LED. In CircuitPython, the NeoPixel is board.NEOPIXEL and the library for it is here and in the bundle. The NeoPixel is powered by the 3.3V power supply but that hasn't shown to make a big difference in brightness or color. In CircuitPython, the LED is used to indicate the runtime status.
Below the USB C connector is the CHG LED. This indicates the charge status of a connected lipoly battery, if one is present and USB is connected. It is amber while charging, and green when fully charged. Note, it's normal for this LED to flicker when no battery is in place, that's the charge circuitry trying to detect whether a battery is there or not.
Above the USB C connector is the D13 LED. This little red LED is controllable in CircuitPython code using board.LED. Also, this LED will pulse when the board is in bootloader mode.
STEMMA QT
[image: adafruit_products_FeatherRP_pinouts_STEMMA.jpg]
The Feather RP2040 comes with a built in STEMMA QT connector! This means you can connect up all sorts of I2C sensors and breakouts, no soldering required! This connector uses the SCL and SDA pins for I2C, which ends up being the RP2040's I2C1 peripheral. In Arduino it is Wire1.

Debug Interfaces
[image: adafruit_products_FeatherRP_pinouts_SWD_marked.jpg]
For advanced debugging or to reprogram your Feather RP2040, there is a footprint to solder a 2*5 pin 0.05" standard SWD header on the board. The image above shows the "pin 1" location by marking it with a triangle. This orientation places the connector key facing towards the end of the board where the USB connector is. This allows you to use something like a Segger J-Link and a 1.27mm SWD cable to connect from your PC to the Feather.
[image: adafruit_products_PXL_20210310_182056224.jpg]

Adafruit Feather RP2040 showing orientation of debug header

[image: adafruit_products_FeatherRP_pinouts_back_debug.jpg]
On the back of the board are pads for the SWCLK and SWDIO pins. They provide access to the internal Serial Wire Debug multi-drop bus, which provides debug access to both processors, and can be used to download code.

Assembly
 Save Subscribe
We ship Feathers fully tested but without headers attached - this gives you the most flexibility on choosing how to use and configure your Feather
Header Options!
Before you go gung-ho on soldering, there's a few options to consider!

The first option is soldering in plain male headers, this lets you plug in the Feather into a solderless breadboard
	· [image: feather_3010-05.jpg]
· [image: feather_3010-05.jpg][image: feather_3010-01.jpg]
· Another option is to go with socket female headers. This won't let you plug the Feather into a breadboard but it will let you attach featherwings very easily
	

	
[image: feather_2886-01.jpg]
[image: feather_2886-01.jpg][image: feather_2886-02.jpg]

We also have 'slim' versions of the female headers, that are a little shorter and give a more compact shape
·
	

	·
·
[image: feather_2940-01.jpg]
[image: feather_2940-01.jpg][image: feather_2940-04.jpg]
Finally, there's the "Stacking Header" option. This one is sort of the best-of-both-worlds. You get the ability to plug into a solderless breadboard and plug a featherwing on top. But its a little bulky
	

	[image: feather_2830-01.jpg]
[image: feather_2830-01.jpg][image: feather_2830-00.jpg]
·
	

Soldering in Plain Headers
Prepare the header strip:
Cut the strip to length if necessary. It will be easier to solder if you insert it into a breadboard - long pins down
	Add the breakout board:
Place the breakout board over the pins so that the short pins poke through the breakout pads
And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to Excellent Soldering).
	

	
[image: feather_solder1.jpg]
[image: feather_solder1.jpg][image: feather_solder2.jpg][image: feather_solder3.jpg]
·

Solder the other strip as well.
	

	·

[image: feather_solder4.jpg]
· [image: feather_solder4.jpg][image: feather_solder5.jpg][image: feather_solder6.jpg]
·

You're done! Check your solder joints visually and continue onto the next steps
	

	· [image: feather_done.jpg]
	

Soldering on Female Header
Tape In Place
For sockets you'll want to tape them in place so when you flip over the board they don't fall out.
[image: feather_taped.jpg]

	

Flip & Tack Solder
After flipping over, solder one or two points on each strip, to 'tack' the header in place
	

	[image: feather_tack1.jpg]
[image: feather_tack1.jpg][image: feather_tack2.jpg][image: feather_tack3.jpg]

And Solder!
Be sure to solder all pins for reliable electrical contact.

(For tips on soldering, be sure to check out our Guide to Excellent Soldering).
	

	[image: feather_soldre1.jpg]
[image: feather_soldre1.jpg][image: feather_solder2.jpg][image: feather_solder3.jpg]

You're done! Check your solder joints visually and continue onto the next
	

	[image: feather_soldered.jpg]
[image: feather_soldered.jpg][image: feather_done.jpg]

	

Power Management
[image: arduino_compatibles_adafruit_products_2772_iso_demo_ORIG.jpg]
Battery + USB Power
We wanted to make the Feather easy to power both when connected to a computer as well as via battery. There's two ways to power a Feather. You can connect with a USB cable C (just plug into the jack) and the Feather will regulate the 5V USB down to 3.3V. You can also connect a 4.2/3.7V Lithium Polymer (Lipo/Lipoly) or Lithium Ion (LiIon) battery to the JST jack. This will let the Feather run on a rechargable battery. When the USB power is powered, it will automatically switch over to USB for power, as well as start charging the battery (if attached) at 200mA. This happens 'hotswap' style so you can always keep the Lipoly connected as a 'backup' power that will only get used when USB power is lost.
The JST connector polarity is matched to Adafruit LiPoly batteries. Using wrong polarity batteries can destroy your Feather

[image: adafruit_products_FeatherRP_pinouts_power_management.jpg]

The above shows the USB C jack (left), Lipoly JST jack (top left), as well as the changeover diode (just to the right of the JST jack) and the Lipoly charging circuitry (to the right of the JST jack). There's also a CHG LED below the USB C connector, which will light up while the battery is charging. This LED might also flicker if the battery is not connected.
Power supplies
You have a lot of power supply options here! We bring out the BAT pin, which is tied to the lipoly JST connector, as well as USB which is the +5V from USB if connected. We also have the 3V pin which has the output from the 3.3V regulator. We use a 500mA peak regulator. While you can get 500mA from it, you can't do it continuously from 5V as it will overheat the regulator. It's fine for, say, powering an ESP8266 WiFi chip or XBee radio though, since the current draw is 'spikey' & sporadic.
[image: adafruit_products_FeatherRP_pinouts_Power.jpg]
Measuring Battery
Note that unlike other Feathers, we do not have an ADC connected to a battery monitor. Reason being there's only 4 ADCs and we didn't want to use one precious ADC for a battery monitor. You can create a resistor divider from BAT to GND with two 10K resistors and connect the middle to one of the ADC pins on a breadboard.
ENable pin
If you'd like to turn off the 3.3V regulator, you can do that with the EN(able) pin. Simply tie this pin to Ground and it will disable the 3V regulator. The BAT and USB pins will still be powered

[image: adafruit_products_FeatherRP_pinouts_enable.jpg]
Alternative Power Options
The two primary ways for powering a feather are a 3.7/4.2V LiPo battery plugged into the JST port or a USB power cable.
If you need other ways to power the Feather, here's what we recommend:
· For permanent installations, a 5V 1A USB wall adapter will let you plug in a USB cable for reliable power
· For mobile use, where you don't want a LiPoly, use a USB battery pack!
· If you have a higher voltage power supply, use a 5V buck converter and wire it to a USB cable's 5V and GND input
Here's what you cannot do:
· Do not use alkaline or NiMH batteries and connect to the battery port - this will destroy the LiPoly charger and there's no way to disable the charger
· Do not use 7.4V RC batteries on the battery port - this will destroy the board
The Feather is not designed for external power supplies - this is a design decision to make the board compact and low cost. It is not recommended, but technically possible:
· Connect an external 3.3V power supply to the 3V and GND pins. Not recommended, this may cause unexpected behavior and the EN pin will no longer. Also this doesn't provide power on BAT or USB and some Feathers/Wings use those pins for high current usages. You may end up damaging your Feather.
· Connect an external 5V power supply to the USB and GND pins. Not recommended, this may cause unexpected behavior when plugging in the USB port because you will be back-powering the USB port, which could confuse or damage your computer.

Raspberry Pi Documentation - Microcontrollers

RP2040 documentation

Can you send me a schematic that how to wire the stepper driver to an Arduino?
06Aug[image: Can you send me a schematic that how to wire the stepper driver to an Arduino?]
Posted By BH-admin 1 Comment(s) 1834 View(s) Stepper Motor,Stepper Driver
Please follow below steps to connect stepper driver to Arduino:
1. Connect driver’s DIR+ and PUL+ to Arduino’s digital port. eg. PIN8 and PIN9.
2. Connect PUL- and DIR- to Arduino’s GND.
3. Write program on your computer by pointing PIN8 and PIN9 to DIR and PUL.
4. Download the program to Arduino, and power Arduino by 5V power supply.
Below schematic diagram is showing the basic connection of Arduino, stepper driver, power supply and stepper motor.
[image: https://www.omc-stepperonline.com/image/catalog/about/Connection.png]
We also provide a simple demo code

int x;
void setup() {
pinMode(9,OUTPUT); // set Pin9 as PUL
pinMode(8,OUTPUT); // set Pin8 as DIR
}
void loop() {
digitalWrite(8,HIGH); // set high level direction
for(x = 0; x < 400; x++) // repeat 400 times a revolution when setting 400 on driver
{
digitalWrite(9,HIGH); // Output high
delayMicroseconds(500); // set rotate speed
digitalWrite(9,LOW); // Output low
delayMicroseconds(500); // set rotate speed
}
delay(1000); //pause 1 second
digitalWrite(8,LOW); // set high level direction
for(x = 0; x < 400; x++)
{
digitalWrite(9,HIGH);
delayMicroseconds(500);
digitalWrite(9,LOW);
delayMicroseconds(500);
}
delay(1000);
}

[image:]

[image:]
OLED displays do not have a backlight, and are fairly low power, this display will draw about 10mA when in use. The display uses 3V power and logic so we just connect to the 3V and GND pins from the feather, as indicated above.
 [image:]

The cute little OLED does all of the data transfer over the I2C pins, highlighed above SDA and SCL. No other pins are required. There are two 2.2K pullups to 3V on each. These pins can be shared with other I2C devices.

The I2C address is 0x38 and cannot be changed

[image:]We had a little bit of space so we added three mini tactile buttons that you can use for user interface.

We label them A B and C because each Feather has slightly different pin numbering schemes and we wanted to make it 'universal'
If you're using Atmega32u4 or ATSAMD21 M0 Feather Button A is #9 Button B is #6 Button C is #5
If you're using ESP8266: Button A is #0 Button B is #16 Button C is #2
If you're using WICED/STM32 Feather Button A is #PA15 Button B is #PC7 Button C is #PC5

Button B has a 100K pullup on it so it will work with the ESP8266(which does not have an internal pullup available on that pin). You will need to set up a pullup on all other pins for the buttons to work.

Install Adafruit SSD1306 Library

Start by installing the support library for the OLED display, you'll need it to talk to the OLED controller chip. We have the Adafruit SSD1306 library repository on GitHub (http://adafru.it/aHq) if you're interested in looking at the code. Start by downloading the library. You can do that by visiting the github repo and manually downloading or, easier, just click this button to download the zip: Download Adafruit_SSD1306 Library http://adafru.it/e3E Rename the uncompressed folderAdafruit_SSD1306 and check that the Adafruit_SSD1306 folder contains Adafruit_SSD1306.cpp and Adafruit_SSD1306.h

[image:]
[image:]

For the Feather RP2040

>>> dir(board)
['__class__', '__name__', 'A0', 'A1', 'A2', 'A3', 'D0', 'D1', 'D10', 'D11', 'D12', 'D13', 'D24', 'D25', 'D4', 'D5', 'D6', 'D9', 'I2C', 'LED', 'MISO', 'MOSI', 'NEOPIXEL', 'RX', 'SCK', 'SCL', 'SDA', 'SPI', 'STEMMA_I2C', 'TX', 'UART', 'board_id']
>>>

[image:]

[bookmark: _GoBack][image:]
image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpeg

image54.jpeg

image55.jpeg

image56.jpeg

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.JPG

image1.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.png

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

